FCIA meeting | Doha, Qatar
Containment in construction

Three principles of fire protection

1. Prevention
 - Reduce chances fire starts
 - Plan and rehearse for fire

2. Detection & suppression
 - Early warning for egress & fighting fire
 - Extinguish fire (Active protection)

3. Containment
 - Contain fire to place of origin (Passive)
Buildings are usually required to have fire-rated barriers.

Compartments are six-sided fire-rated boxes.

Compartmentation stops the propagation of fire, smoke, and gasses.
Essential services often compromise fire and life safety.

Openings are needed to run essential services...

...But if they stay unsealed, fire, smoke and gasses will spread.
Regulations therefore require “firestopping”

Firestopping = sealing the opening to restore the hourly rating to fire barrier
Firestopping is required for ALL openings...
How Firestopping solutions are tested

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| Barriers | ASTM E-119
 | UL 263 |
| Through Penetration | ASTM E-814
 | UL 1479 |
| Joints | UL 2079
 | ANSI 2079 |
| Safing Slot | ISMA
 | ASTM E-2307 |

- Third-Party Testing To Standards
- Ratings:
 - F Ratings
 - T Ratings
 - L Ratings (Optional)
 - W Rating (optional)
Tests with a 3rd party testing laboratory
Firestopping is a technical business requiring tested Systems
How Through-Penetrations are tested

ASTM E814 Fire Tests of Through-
UL 1479 Penetration Firestop Systems
Top View of A Slab (Before)
Side View of A Slab (During)
ASTM E 119 Time – Temperature curve

- **2080 °F (5 hours)** mineral wool still intact
- **Fiberglass Insulation Fails (6 Minutes) at 1050 F and IS Not To Be Used In a Fire Containment Assembly**

Glass Melts

Aluminum Melts
Bottom View of A Slab (After)
The Hose-Stream Test...
Example of a Through-Penetration System

Drawing showing system

System Number

System Description

Table:

<table>
<thead>
<tr>
<th>Min Operating Blanks</th>
<th>Min Concrete Thickness</th>
<th>Optional</th>
<th>Concrete Type</th>
<th>Cable Type</th>
<th>Percent Cable Fill</th>
<th>F Rating</th>
<th>T Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 in.</td>
<td>2-1/2 in.</td>
<td>PVC</td>
<td>A, B, C</td>
<td>0.27</td>
<td>0.35</td>
<td>0.4Y</td>
<td>0.4Y</td>
</tr>
<tr>
<td>6 in.</td>
<td>2-1/2 in.</td>
<td>PVC</td>
<td>A, B, C</td>
<td>0.27</td>
<td>0.35</td>
<td>0.4Y</td>
<td>0.4Y</td>
</tr>
<tr>
<td>8 in.</td>
<td>2-1/2 in.</td>
<td>Steel</td>
<td>A, B, C</td>
<td>0.27</td>
<td>0.35</td>
<td>0.4Y</td>
<td>0.4Y</td>
</tr>
<tr>
<td>8 in.</td>
<td>2-1/2 in.</td>
<td>Steel</td>
<td>A, B, C</td>
<td>0.27</td>
<td>0.35</td>
<td>0.4Y</td>
<td>0.4Y</td>
</tr>
<tr>
<td>10 in.</td>
<td>2-1/2 in.</td>
<td>Steel</td>
<td>A, B, C</td>
<td>0.27</td>
<td>0.35</td>
<td>0.4Y</td>
<td>0.4Y</td>
</tr>
<tr>
<td>10 in.</td>
<td>2-1/2 in.</td>
<td>Steel</td>
<td>A, B, C</td>
<td>0.27</td>
<td>0.35</td>
<td>0.4Y</td>
<td>0.4Y</td>
</tr>
<tr>
<td>12 in.</td>
<td>2-1/2 in.</td>
<td>Steel</td>
<td>A, B, C</td>
<td>0.27</td>
<td>0.35</td>
<td>0.4Y</td>
<td>0.4Y</td>
</tr>
</tbody>
</table>

*Serfing the UL, Classification Mark.
Example of a Through-Penetration System

System No. C-AJ-2297

* F Ratings — 2 and 3 Hr (See Item 4C)
* T Ratings — 0, 1, 2 and 3 Hr (See Item 4C)
* L Rating At Ambient — Less Than 1 CFM/sq ft
* L Rating At 400 F — Less Than 1 CFM/sq ft
* W Rating — Class 1 (See Item 4B)
Example of a Through-Penetration System

System No. C-AJ-3154
F Ratings — 2, 3 and 4 Hr (See Item 5)
T Ratings — 0, 1/2 and 2-3/4 Hr (See Item 5)
How Construction joints are tested

UL 2079 Tests for Fire Resistance
ASTM E1966 of Building Joint Systems

Static Joints that do not move
Dynamic Joints that move
Five Types of Construction Joints

- Wall to Wall
- Floor to Floor
- Floor to Wall
- Wall to Floor
- Bottom of Wall
Cycling the Joint Prior to Burning
Ready to Burn
The Fire Exposure Test
Exposed Face After the Test
An Immediate Hose Stream
Exposed Side After Hose Stream
Unexposed Side After Testing
Example of a joint system

Drawing showing system

System Number

System Description

System No. FW-D-1006
Assembly Rating — 2A
Nominal Joint Width — 4 In.
Class II Movement Capabilities — 15% Compression or Extension

1. Wall Assembly — Min 4-1/2 in. (114 mm) thick reinforced lightweight or normal weight (100-150 pcf or 1600-2400 kg/m³) structural concrete. Wall may also be constructed of any UL Classified Concrete Blocks*.
 See Concrete Blocks (CAZT) category in the Fire Resistance Directory for names of manufacturers.
2. Floor Assembly — Min 4-1/2 in. (114 mm) thick reinforced lightweight or normal weight (100 - 150 pcf or 1600-2400 kg/m³) structural concrete.
3. Joint System — Max separation between edge of floor and face of wall (at time of installation of joint system) is 4 in. (102 mm). The joint system is designed to accommodate a max 15 percent compression or extension from it’s installed width. The joint system shall consist of the following:
 A. Forming Material* — Min 4 pcf (64 kg/m³) mineral wool batt insulation installed in joint opening as a permanent form. Pieces of batt cut to min width of 4 in. (102 mm) and installed edge-first into joint opening, parallel with joint direction, such that batt sections are compressed min 33 percent in thickness and such that the compressed batt sections are recessed from top surface of the floor as required to accommodate the required thickness of fill material. Adjoining lengths of batt to be tightly-butted with butted seams spaced min 16 in. (406 mm) apart along the length of the joint.
 FIBREX INSULATIONS INC — FBX Safing Insulation.
 IIG MINNOW LLC — Safing Insulation/MW
 ROCK WOOL MANUFACTURING CO — Delta Board
 ROXUL INC — SAFE
 THERMABACK LLC — Type SAF
 B. Fill, Void or Cavity Material* — Spray — Min 1/8 in. (3.2 mm) wet thickness or 1/16 in. (1.6 mm) dry thickness of fill material applied within the joint, flush with top surface of floor and lapping a min 1 in. (25 mm) onto the top surface of the floor and side of wall.
 SPECIFIED TECHNOLOGIES INC — SpecSeal AS200 Elastomeric Spray

*Bearing the UL Classification Mark
Example of a joint system

System No. FF-D-0005
Assembly Rating - 3 Hr
Nominal Joint Width - 1 In.
L Rating At Ambient - Less Than 1 CFM/In Ft
L Rating At 400°F - Less Than 1 CFM/In Ft
Class II Movement Capabilities - 12.5% Compression Or Extension
How Curtain wall systems are tested

ASTM 2307 Determining the Fire Endurance of Perimeter Firebarrier Systems Using the Intermediate Scale Multi-Story Test Apparatus
The Basics of a Fire Containment System
STI Curtain Walls designs are tested according to ASTM 2307
Curtain Walls designs are tested according to ASTM 2307

1. Interior burner lit
 Time: 0:00

2. Exterior burner lit
 Time: 0:05

3. Flames climbing exterior
 Time: 0:15

4. Melting of mullions & transoms
 Time: 0:45
Post Test Analysis indicates the failure points that need special protection

Exterior view

Interior view

Mullion melted

Transom melted

Mullion melted

Mullion cover

Curtain wall insulation

STI AS Spray

Mullion cover
Curtainwall and Safing Insulation

The Backbone of the System

- Curtainwall Insulation is always 128 kg/cm mineral wool due to the high melt point and rigidity.
- Safing is installed between the face of slab and the inboard side of the curtainwall insulation, closing off the construction gap.
- Safing is 64 kg/cm and can be compressed to up to 50% and will expand and contract with movement of the wall.

System designed to maintain integrity of this intersection.
Use proper orientation and compression

Compression and installation of mineral wool into joint
Mineral wool to be installed with fibers running parallel to the joint edge
New design v/s traditional design
Example of a curtain wall system

System Number

Drawing showing system

System Description
System Components

- Aluminum “tubular Mullion”
- Foil Faced Mineral Wool 8 PCF
- Mullion Covers
- AS-205 Spray over Safing
- Slab
- Transom and Vision Glass
- Perimeter Angle 22 Ga
- Spandrel Panel (Glass, aluminum, or stone)
- Stiff-Back Angle 22 Ga

Vertical Components

Horizontal Components
Questions
Thank you

شكرًا

Tony A. Rjeily
General Manager EMEI
STI
Tonyar@stifirestop.com
Cell:+33 6 70 58 59 40

Mehsen Dahdah
Territory Manager
STI
MehsenD@stifirestop.com
Cell:+974 5574 1746

Fouad Hajj
Regional Manager Gulf
STI
FouadH@stifirestop.com
Cell:+974 558 58 390