2015

The Joint Commission
Survey Process

Anne M. Guglielmo, CFPS, Engineer
Department of Engineering
The Joint Commission
History and Function
The Joint Commission

Who is The Joint Commission?

- 1913 – American College of Surgeons formed – Ernest Codman - Began the idea of Minimum Standards – and review process
 - 1917 – 5 Standards
 - 1926 – 18 Pages
- 1950 – More than 3200 hospitals have successful surveys
- 1951 – 4 societies joint to create the Joint Commission on Accreditation of Hospitals
 - American College of Physicians, Canadian Medical Association, American Medical Association, American Hospital Association
Who is The Joint Commission - continued

- 1953 - JCAH publishes its own standards
- 1963 - JCAH begins charging for surveys
- 1964 - HCFA (Health Care Finance Administration) established
- 1965 - Congress passes Social Security Act of 1965 (SSA), with a provision that hospitals accredited by JCAH are “deemed” to be in Compliance
 - Hospitals seeking Deemed Status
- 1972 - SSA is amended, resulting in validation surveys
The Joint Commission

Who is The Joint Commission - continued

- 1987 - JCAH becomes Joint Commission on Accreditation of Healthcare Organizations (JCAHO)
- 1995 - Agenda for Change (performance based replaced standards based)
- 2004 – Standards change again – new numbering system – less prescriptive
- 2007 – Name Change:

 The Joint Commission
The Joint Commission

Not the only game in town!!

- Hospitals that bill Medicare and Medicaid for re-imbursement funds must be accredited
- Accreditation choices include:
 - State Accreditation – Free to the hospital
 - Private Accreditation – At cost to the hospital
 - The Joint Commission
 - DNV – Det Norske Veritas
 - Healthcare Facilities Accreditation Program (HFAP)
 - Others – by program (AAAHC)
Survey Details
Life Safety Survey Process

- What does a survey team consist of?
 - Survey Team includes Clinical team – Doctors, Nurses, Pharmacists, Therapists, etc.
 - Life Safety Surveyor (LSCS) – Typically Facilities Engineer or Facilities Director, Safety Director

- How long is a survey?
 - Survey length is determined by size of organizations, type of services provided, number of buildings - as few as 1 day – up to 5 days

- What is the survey cycle?
 - 18 – 36 months
Life Safety Survey Process

Survey Agenda:

1. On arrival the first day of survey:
 - LSCS to check major systems (fire alarm, medical gas, etc.)
 - Review Statement Of Conditions (building plans & PFIs), waivers and equivalencies (History Audit Trail), ILSM P&P, fire response plan

2. Join Clinical team for Opening

3. Conduct LS/EC focused Document Review

4. Survey ORs for pressure relationships immediately after Document Review

5. Conduct Building Tour *(increase sample size)* – LSCS to review Hospital and Ambulatory Surgery Centers
Primary LSCS Survey Responsibilities

- LS.01.01.01 (SOC)
- LS.01.02.01 (ILSM)
- EC.02.03.01 (Fire Drills)
- EC.02.03.05 (Fire Equipment Maintenance)
- EC.02.05.01 (Utility Systems Testing & Maintenance)
- EC.02.05.07 (Emergency Power Testing)
- EC.02.05.09 (Piped Medical Gas Testing)
- EC.02.06.01 (Safe Patient Care Environment)
- Entire LS Chapter of Standards – Life Safety Code Compliance
Life Safety Survey Process

Building Tour – Where does the LSCS go?

What we want to see:

- **Building Separations**
 - Medical Office Bldg (MOB)
 - Ambulatory Healthcare

- **Pt Care Units**
 - Fire / Smoke Barriers
 - Egress Corridors

- **Support Units**
 - Pharmacy
 - Food service
 - Laboratory

- **Mechanical Space / Utilities**
 - Roof
 - Generators
 - Med Gas Tank Room
 - Fire Alarm Panel / Fire Pump

Route:

- Roof
- Machine Room
- Medical/Surgical Unit
- Pediatrics
- Locked Psych
- Women’s Health
- Pharmacy
- Generator
- Tank Room
- Food service
- Medical Office Bldg (MOB)
- Fire Pump
- Lobby
- Construction Areas
Life Safety Survey Process

Life Safety Drawings

- The organization is required to provide the LSCS with a set of Life Safety Drawings at the start of the survey. The entire survey is conducted based on the drawings provided to the surveyor.

- Common observation is inaccurate – incomplete – incorrect drawings provided to the surveyor.
 - The last thing an organization wants a surveyor to do is guess!!
Life Safety Drawings

The Life Safety Drawings should contain the following information – at a MINIMUM:

- Legend
- Rated wall locations
- Hazardous Areas
- Suite boundaries – including square footage totals
- Smoke compartment boundaries and square footages
- References for any equivalencies that have been granted
Life Safety Drawings

How can you help organizations improve their drawings?

- When appropriate - provide a drawing of all rated barriers where work was performed
- Anytime you are performing contracted work – provide Facilities/Operations with copies of the UL assemblies installed in the facilities as a result of the work completed
- Leave product samples
- Pictures of work as part of final report/documentation
Survey Results
Top Eight Cited Standards: 2014 – 2015

[RANKING FROM ALL SURVEYS]

<table>
<thead>
<tr>
<th>Standard</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC.02.06.01: Built Environment</td>
<td>#1</td>
<td>#1</td>
</tr>
<tr>
<td>EC.02.05.01: Utility Systems Risks</td>
<td>#2</td>
<td>#3</td>
</tr>
<tr>
<td>LS.02.01.20: Means of Egress</td>
<td>#4</td>
<td>#4</td>
</tr>
<tr>
<td>LS.02.01.30: Protection</td>
<td>#8</td>
<td>#6</td>
</tr>
<tr>
<td>LS.02.01.10: General Building Requirements</td>
<td>#7</td>
<td>#7</td>
</tr>
<tr>
<td>LS.02.01.35: Extinguishment</td>
<td>#9</td>
<td>#8</td>
</tr>
<tr>
<td>EC.02.03.05: Fire Safety Systems</td>
<td>#6</td>
<td>#9</td>
</tr>
<tr>
<td>EC.02.02.01: Hazardous Materials & Waste</td>
<td>#10</td>
<td>#10</td>
</tr>
</tbody>
</table>
Deficiency Resolution
Deficiency Resolution

Deficiency Resolution Options:

- Correct it immediately
- Correct it within 45 days
 - Management process that documents the deficiency and actions to resolve
 - ILSM must be considered
- Plan For Improvement located in the Statement of Conditions™
 - Corrected within 6 months of the Projected Completion Date
 - ILSM must be considered
Background – PFI Process

- In 1995 the Joint Commission introduced the Statement of Conditions™ (SOC) [*electronic in 2006 – 2007*]
 - Basic Building Information
 - Plan For Improvement

- Plan For Improvement (PFI) are the documented observation of a deficiency with a Projected Completion Date

- Interim Life Safety Measures (ILSM) are an important part of the PFI process
 - ILSM ensures the building remains safe for occupants as interim measures are implemented
PFI’s – Plans for Improvement

Organizations conduct routine building inspections

- During building inspections deficiencies are discovered
- Resolution of deficiencies occurs either
 - Immediately
 - Scheduled activity (i.e. corrective maintenance - <45 days to correct)
 - Scheduled activity (i.e. Plan For Improvement)
Interim Life Safety Measures

- Order of Standards (LS.01.02.01)
 - EP 1 & 2 regardless of ILSM policy
 - EP 3 must clearly define the ILSM policy including
 - AFS 10 Process – Return Survey
 - When to implement
 - What to do to protect occupants
 - Both construction related and non-compliance with the LSC
 - EPs 4 – 14 align with policy and implementation strategies

© Copyright, The Joint Commission
Preconstruction Risk Assessment (PRA)

Construction or renovation in occupied healthcare facilities can result in environmental problems such as:

- Noise
- Vibration
- Creation or spread of contaminants
- Disruption of essential services
- Emergency Procedures
- Air quality
PFI: A Proactive Process

When a Life Safety Code deficiency is found during survey it results in a survey action:

- If the organization has a PFI already identifying the deficiency, the finding (RFI) is not written
 - All open PFIs will be imported into the final survey report
 - No ESC required as the PFI has the Projected Completion Date already identified
- If the organization does not have a PFI identifying the deficiency, then a finding is written as a RFI
Plan For Improvement

All PFIs may be edited by the organization until they are *accepted* during survey

- On the first day of survey by the LSCS they will review all open PFIs
- The Surveyor will evaluate each PFI for validity
- The Surveyor will “accept” the Open PFI which locks the PFI

NOTE: A PFI is associated with the Life Safety Code and the Life Safety Chapter
Plan For Improvement

Once the Joint Commission accepts the PFI we are acknowledging the organization has identified deficiencies in the Plan For Improvement

- The Joint Commission expects the organization to resolve the PFI no later than six months past the Projected Completion Date
- Failure to resolve the deficiency more than six months past the Projected Completion Date may result in an adverse decision (AFS10 – return survey)
Barrier Management Symposium
Barrier Management Symposium

...at no cost to the attendee...
Barrier Management Symposium

Program Developers:
- Joint Commission
- Firestop Contractors International Association (FCIA)
- Underwriters Laboratories

Participating Organizations:
- American Society for Healthcare Engineering
- AWCI & Gypsum Institute
- Fire Damper Industry
- Fire Rated Glazing Industry
- National Concrete Masonry Association
Barrier Management Symposium

Program Rollout

- Colorado – Fall 2013
- Alabama – Spring 2014
- Philadelphia – Spring 2014
- California – Fall 2014
- Minnesota – Spring 2015
- Indiana – Summer 2015
- Tennessee – Fall 2015

- What’s Left?
 Program will close out in 2016
 Region 1 North East, 2 NY Area, 7 South, 10 North West
 Hope to close with a final program in Chicago
Barrier Management Symposium

Program Details:

- Attendance includes facility managers, safety directors, hired contractors, in-house maintenance staff, product vendors/suppliers
- Average 150 people – some more, some less – varied by region and location
- 1 ½ days of education at no cost to the attendee for the program content
- Goal and focus to provide an understanding and education about the assembly – provide strategies to help hospitals develop strategies to reduce the number of observations on survey
Tools and Resources
New Resource:

JCPEP

http://www.jointcommission.org/topics/the_physical_environment.aspx
High Reliability in the Physical Environment

Three Objectives
- Ensure life safety
- Ensure device stability
- Ensure continuity of the organization’s mission

System Elements
- Design
- Installation
- Equipment
- Inspection, Testing, and Maintaining
The purpose of this portal is to provide guidance and education to reduce instances of non-compliance with the top eight Environment of Care/Life Safety standards.

About this Portal

The Joint Commission has identified several Standards that have been frequently cited during survey activity over the past few years. This portal, in partnership with the American Society for Healthcare Engineering (ASHE), will provide information to reduce findings of non-compliance.

Focus of the Portal:

- Eight identified Standards
- Each Standard will be addressed over two months;
 - First month - requirements and compliance
 - Second month – Leadership, evaluating organization level compliance
- Improved patient safety with:
 - Best practices in the patient care environment
 - High Reliability practices for leadership to assess and ensure compliance

Get e-Alerts on the Physical Environment Sign up here
Get e-Alerts on the Physical Environment Sign up here

Mission:

To provide a single, authorized resource where information specific to frequently identified Standards and Elements of Performance (EP) of the Joint Commission can be accessed. This resource is to be free to all seeking this information. The specific Standards and associated EPs are discussed by the Joint Commission and possible solutions presented by Joint Commission Resources. The site is partnering with the American Society for Healthcare Engineering (ASHE) to provide world class examples of successful compliance from high reliability organizations.

The Physical Environment Portal:
A collaboration between The Joint Commission and The American Society for Healthcare Engineering
View Infographic

Joint Commission Resources

- Web Store: Environment of Care Resources
- Need Additional Information? JCR Consulting

Special Instructions

- How to access JCR Web Store Content

ECNews
Comply with tough EC, LS & EM challenges
Subscribe Now

Care Base Camp

November 12, 2015
SEMINAR | Exploring the Life Safety Chapter

December 9, 2015
WEBINAR | 2015 Environment of Care and Life Safety Code Webinar Series: Session 4
Utility Systems EC.02.05.01

EC.02.05.01: The hospital manages risks associated with its utility systems

Standard Scoring Analysis

<table>
<thead>
<tr>
<th>Standard</th>
<th>EP</th>
<th>Issue</th>
<th>% Non-compliant</th>
<th>COP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>Air pressure, filtration and air changes in critical care areas such as the OR</td>
<td>32.78</td>
<td>$824 (A-0747)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Label utility system controls for partial or complete emergency shutdown</td>
<td>21.39</td>
<td>$824 (A-0701)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Design and Installation of utilities to meet patient care and operational needs</td>
<td>10.39</td>
<td>$824 (A-0700)</td>
</tr>
</tbody>
</table>

An example of improved compliance for EP 1 and EP 15:

Issue: Protect Patients from Airborne Contaminates

Risk: Hospital Acquired Infections

Impact: Harm to the Patients

Mitigation: Ensure Utilities Equipment effectively meets clinical needs

Aging ventilation systems resulting in the inability to deliver desired air volume or quality, results in non-compliance identified during survey, scored at EC.02.05.01 EP 15.

Inability of the utility systems to operate as expected may result in airborne contaminates negatively impacting an already compromised patient.

Patients are not protected from airborne contaminants, and the organization is not considered to be a highly reliable organization.

Equipment systems condition and reliability is evaluated by Facilities with Leadership, a strategic capital plan is created, and replacement equipment is scheduled and installed. Compliant at future surveys.

Visit ASHE FOCUS for more physical environment tools and resources.
FOCUS ON EC.02.05.01

EC.02.05.01 - THE HOSPITAL MANAGES RISKS ASSOCIATED WITH ITS UTILITY SYSTEMS

The following elements of performance are the most common reasons why hospitals are cited for EC.02.05.01. ASHE has provided resources to help hospitals address each of these elements of performance. Please note that additional resources will be added to this page throughout August and September 2015.

#1 - Inappropriate Room Pressurization [EP15]
#2 - Failure to Label Electric Panel [EP8]
#3 - Lack of Emergency Lighting [EP1]
#4 - Failure to Label Utilities [EP8]
#5 - Inappropriate Electrical Issues [EP1]
ROOM PRESSURIZATION

Certain rooms within a health care building should be positively or negatively pressurized with respect to surrounding areas. Positively pressurized rooms are usually designed to protect a patient, clean supplies, or equipment within the room. Negative pressure is used to contain airborne contaminants within a room. The 2014 FGI Guidelines/Standard 170-2013 provides lists of rooms that should be positively or negatively pressurized with respect to surrounding areas. The following are examples:

- Operating rooms
- Delivery rooms
- Trauma rooms
- Newborn intensive care
- Laser eye rooms
- Protective environment rooms
- Pharmacy
- Laboratory, media transfer
- Clean central medical and surgical supply rooms

A room may be pressurized so that it is positive with respect to adjacent areas for several reasons. It may be done to protect patients in operating rooms and protective environment rooms from airborne pathogens that may be present in adjacent areas. It may be done to protect sterile medical and surgical supplies in supply rooms from airborne contaminants that may be present in adjacent rooms. If these rooms are not properly pressurized, airborne contaminants from adjacent areas may be pulled into them. Increased concentrations of airborne bacteria, fungi, and viruses within these rooms may contaminate clean equipment or promote increases in nosocomial infections. Positively pressurized rooms are usually the cleanest environments in a hospital. Loss of positive pressure compromises the aseptic environment within the room.

According to the FGI Guidelines, the following are examples of rooms in hospitals and outpatient facilities that should be negatively pressurized with respect to adjacent areas:

- ER waiting rooms
- Radiology waiting rooms
- Triage
- Toilet rooms
- Airborne infection isolation (AII) rooms
- Darkrooms
- Cytology, glass washing, histology, microbiology, nuclear medicine, pathology, and sterilizing laboratories
- Autopsy rooms
- Soiled workrooms or holding rooms
- Soiled or decontamination room for central medical and surgical supply
- Soiled linen and trash chute rooms
- Janitors’ closets

Rooms such as airborne infection isolation rooms are negatively pressurized with respect to adjacent areas to prevent airborne contaminants (e.g., microbial pathogens, chemicals) from drifting to other areas. Loss of negative pressure within these rooms allows unpleasant odors to migrate through the building and may promote the spread of airborne contaminants. One common use of airborne infection isolation rooms is for patients with active tuberculosis, a disease caused by the bacteria Mycobacterium.
Questions?
Department of Engineering
630 792 5900

George Mills, MBA, FASHE, CEM, CHFM, CHSP, Green Belt
 Director
Andrea Browne, PhD., DABR
 Medical Physicist

Anne Guglielmo, CFPS, LEED, A.P., CHFM, CHSP
 Engineer

John Maurer, CHFM, CHSP, SASHE
 Engineer

Kathy Tolomeo, CHEM, CHSP
 Engineer

James Woodson, P.E., CHFM
 Engineer
The Joint Commission Disclaimer

- These slides are current as of 11/01/2015. The Joint Commission reserves the right to change the content of the information, as appropriate.

- These slides are only meant to be cue points, which were expounded upon verbally by the original presenter and are not meant to be comprehensive statements of standards interpretation or represent all the content of the presentation. Thus, care should be exercised in interpreting Joint Commission requirements based solely on the content of these slides.

- These slides are copyrighted and may not be further used, shared or distributed without permission of the original presenter or The Joint Commission.